9.4 悪臭

9.4.1 調査内容

悪臭の調査地点等は、表-9.4.1に示すとおりである。

また、調査地点図は図-9.4.1、調査状況は表-9.4.2に示すとおりである。

なお、調査地点の選定理由及び調査頻度の設定理由は、以下に示すとおりである。

≪調査地点の選定理由≫

悪臭の調査地点は、建設候補地及び周辺地域の悪臭の現況把握のため、建設候補付近(北側)及び大気質と同様に、「上三永第三会館」を代表地点とした。また、北側の土与丸地区を補足地点として選定した。

≪調査頻度の設定理由≫

悪臭の調査は、悪臭が発生しやすい夏季、及び冬季に実施する。なお、異常値等 を確認するため、悪臭調査時の気象(風向風速、気温、湿度)を調査する。

調査項目 調査方法 調査地点 調査頻度 年2回(夏季・冬季) 「特定悪臭物質の測 アンモニア、メチルメルカプ 3地点(建設候補地付 冬季: 平成26年 定の方法」(昭和47年 タン、硫化水素、硫化メチル 近及び周辺地域2地 2月5日 環境庁告示第9号)に 等の特定悪臭物質22項目注) 点) 夏季: 平成26年 定める方法 7月2日 悪臭 「臭気指数及び臭気 年2回(夏季・冬季) 排出強度の算定の方 3地点(建設候補地付 冬季: 平成26年 臭気指数(臭気濃度) 法」(平成7年環境庁告 近及び周辺地域2地 2月5日 示第63号)に定める方 夏季: 平成26年 点) 7月2日 悪臭調査時の気象(風向風 簡易気象計による方 気象 悪臭調査時に実施 速、気温、湿度)

表-9.4.1 悪臭の調査地点等

注)特定悪臭物質 22 項目:アンモニア、メチルメルカプタン、硫化水素、硫化メチル、二硫化メチル、トリメチルアミン、アセトアルデヒド、 プロピオンアルデヒド、ノルマルブチルアルデヒド、イソブチルアルデヒド、ノルマルバレルアルデヒド、 イソバレルアルデヒド、イソブタノール、酢酸エチル、メチルイソブチルケトン、トルエン、スチレン、キシレン、 プロピオン酸、ノルマル酪酸、ノルマル吉草酸、イソ吉草酸

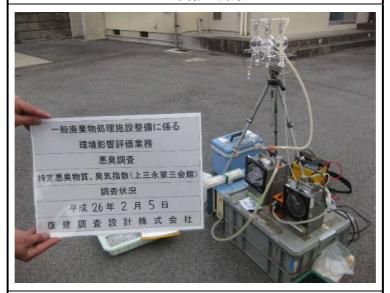


表-9.4.2 調査状況

建設候補地付近

上三永第三会館

松子山浄水場

9.4.2 調査結果

(1) 特定悪臭物質

特定悪臭物質の調査結果は、表-9.4.3に示すとおりである。

3 地点の調査結果は、参考とした規制基準値を下回っていた。なお、建設候補地周辺 (東広島市及び竹原市)は、悪臭防止法による規制の指定はされていないが、規制基準 値と比較した。

表-9.4.3(1)特定悪臭物質の調査結果(冬季)

測定項目	単位	建設候補地 付近	上三永第三 会館	松子山 浄水場	規制基準値注1)
風向	_	NNW~NW	E∼N	N~NW	_
風速	m/s	0.1~0.3	0.5~0.6	0.6~0.9	_
気温	$^{\circ}$	1.0	3. 5	2.0	_
湿度	%	82	47	67	_
アンモニア	ppm	ND	ND	ND	1
メチルメルカプタン	ppm	ND	ND	ND	0.002
硫化水素	ppm	ND	ND	ND	0.02
硫化メチル	ppm	ND	ND	ND	0.01
二硫化メチル	ppm	ND	ND	ND	0.009
トリメチルアミン	ppm	0.0006	ND	ND	0.005
アセトアルデヒド	ppm	ND	ND	ND	0.05
プロピオンアルデヒド	ppm	ND	ND	ND	0.05
ノルマルブチルアルデヒド	ppm	ND	ND	ND	0.009
イソブチルアルデヒド	ppm	ND	ND	ND	0.02
ノルマルバレルアルデヒド	ppm	ND	ND	ND	0.009
イソバレルアルデヒド	ppm	ND	ND	ND	0.003
イソブタノール	ppm	ND	ND	ND	0.9
酢酸エチル	ppm	ND	ND	ND	3
メチルイソブチルケトン	ppm	ND	ND	ND	1
トルエン	ppm	ND	ND	ND	10
スチレン	ppm	ND	ND	ND	0.4
キシレン	ppm	ND	ND	ND	1
プロピオン酸	ppm	ND	ND	ND	0.03
ノルマル酪酸	ppm	ND	ND	ND	0.001
ノルマル吉草酸	ppm	ND	ND	ND	0.0009
イソ吉草酸	ppm	ND	ND	ND	0.001

注1) 「悪臭防止法の規定に基づく規制地域の指定及び規制基準の設定」平成14年11月28日広島県告示第1199号

注 2) ND:定量下限值未満

表-9.4.3 (2) 特定悪臭物質の調査結果(夏季)

測定項目	単位	建設候補地 付近	上三永第三 会館	松子山 浄水場	規制基準値 ^{注 1)}
風向	_	SW∼W	NE~N	N~NNW	_
風速	m/s	0.5~0.6	0.2~0.4	0.6	_
気温	$^{\circ}$ C	25. 5	28. 0	28.4	_
湿度	%	80	56	57	_
アンモニア	ppm	ND	ND	ND	1
メチルメルカプタン	ppm	ND	ND	ND	0.002
硫化水素	ppm	ND	ND	ND	0.02
硫化メチル	ppm	ND	ND	ND	0.01
二硫化メチル	ppm	ND	ND	ND	0.009
トリメチルアミン	ppm	ND	ND	ND	0.005
アセトアルデヒド	ppm	ND	ND	ND	0.05
プロピオンアルデヒド	ppm	ND	ND	ND	0.05
ノルマルブチルアルデヒド	ppm	ND	ND	ND	0.009
イソブチルアルデヒド	ppm	ND	ND	ND	0.02
ノルマルバレルアルデヒド	ppm	ND	ND	ND	0.009
イソバレルアルデヒド	ppm	ND	ND	ND	0.003
イソブタノール	ppm	ND	ND	ND	0.9
酢酸エチル	ppm	ND	ND	ND	3
メチルイソブチルケトン	ppm	ND	ND	ND	1
トルエン	ppm	ND	ND	ND	10
スチレン	ppm	ND	ND	ND	0.4
キシレン	ppm	ND	ND	ND	1
プロピオン酸	ppm	ND	ND	ND	0.03
ノルマル酪酸	ppm	ND	ND	ND	0.001
ノルマル吉草酸	ppm	ND	ND	ND	0.0009
イソ吉草酸	ppm	ND	ND	ND	0.001

注 1)「悪臭防止法の規定に基づく規制地域の指定及び規制基準の設定」平成 14 年 11 月 28 日広島県告示 第 1199 号

注 2) ND:定量下限值未満

(2) 臭気指数(臭気濃度)

臭気指数(臭気濃度)の調査結果は、臭気指数の基準は表-9.4.4に示すとおりである。

3 地点の臭気指数は、10 未満であり、試料を 10 倍希釈した時に臭わなくなる濃度未満であった。

表-9.4.4 臭気指数(臭気濃度)の調査結果

測定項目	調査時期	建設候補地 付近	上三永第三 会館	松子山 浄水場
白戶松粉	冬季	10 未満	10 未満	10 未満
臭気指数	夏季	10 未満	10 未満	10 未満

9.4.3 予測及び評価

悪臭の予測方法等は、表-9.4.5に示すとおりである。

内容 予測事項 予測方法 予測地域 予測時期 土地 大気の拡散式(プ 存在及び供 ルーム式及びパー建設候補地及び 排出ガス(ごみ焼 用による影 又は工作 臭気指数 却施設の煙突) フ式) に基づく理 周辺地域 響が最大と 論計算 なる時期 施設の稼 物の存在及び供用 働 大気の拡散式(プ 存在及び供 機械等の稼働(し ルーム式及びパ 建設候補地及び 用による影 尿処理施設の臭 臭気指数 フ式) に基づく理 周辺地域 響が最大と 突) なる時期 論計算

表-9.4.5 悪臭の予測方法等

(1) 土地又は工作物の存在及び供用

a) 施設の稼働(排出ガス)

① 予測事項

予測事項は、施設の稼働に伴うごみ焼却施設の煙突からの排出ガスとした。

② 予測方法

予測式は、「環境アセスメントの技術」(1999年8月、(社)環境情報科学センター)に示されるプルーム・パフモデルを用いた。予測フローは、図-9.4.2に示すとおりである。

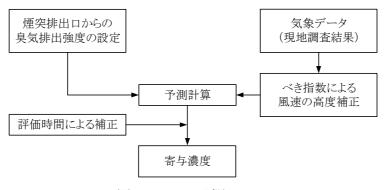


図-9.4.2 予測フロー

<有風時(U≥1.0m/s:プルームモデル)>

$$C(x, y) = \frac{Q}{\pi \cdot \sigma_{y} \cdot \sigma_{z} \cdot U} \cdot \exp(-\frac{y^{2}}{2\sigma_{y}^{2}}) \cdot \exp(-\frac{He^{2}}{2\sigma_{z}^{2}})$$

<弱風時(U=0.5~0.9m/s:パフモデル)>

$$C(x, y) = \frac{Q}{(2\pi)^{3/2} \cdot \sigma_x \cdot \sigma_y \cdot \sigma_z} \cdot \exp(-\frac{(x - Ut)^2}{2\sigma_x^2} - \frac{y^2}{\sigma_y^2}) \cdot 2\exp(-\frac{He^2}{2\sigma_z^2})$$

ここで、

x:風向に沿った風下距離 (m)

y: x 軸に直角な水平距離 (m)

U:風速 (m/s)

Q: 臭気排出強度 (Nm³/s) = 臭気濃度×排ガス量(Nm³/min)/60

He:有効煙突高 (m)

t:経過時間

 σ_x : x軸方向の臭気濃度の拡散幅 (無風・弱風時のとき $\sigma_x = \sigma_y = \alpha \cdot t$)

σ_ν: y 軸方向の臭気濃度の標準偏差

 σ_z : z軸方向の臭気濃度の標準偏差 (無風・弱風時のとき $\sigma_z = \gamma \cdot t$)

【予測結果の補正係数】

 $\sigma y_1/\sigma y_2 = (T_1/T_2)^p = 3.5 (C max に対する補正係数) ここで、$

σy₁:時間 T₁における臭気の水平方向の拡散幅

σy2:時間T2における臭気の水平方向の拡散幅

 $T_1:$ プルームモデル・パフモデルでの評価時間 (=3分)

T₂: 臭気の評価時間 (=30 秒)

p:定数(=0.7)

注)補正係数は「廃棄物処理施設生活環境影響調査指針の解説」(平成 10 年 12 月、 厚生省水道環境部廃棄物法制研究会)を参照した。

【拡散幅及び標準偏差】

拡散幅及び標準偏差は、表-9.4.6に示すとおり「窒素酸化物総量規制マニュアル (新版)」(平成12年、環境庁)に示される Pasquill-Gifford 図の近似関係に基づいて設定した。

表-9.4.6 (1) Pasquill-Gifford 図の近似関係

 $\sigma_{y}(x) = \gamma_{y} \cdot x^{\alpha y}$

大気安定度	α у	γу	風下距離x (m)
Λ	0.901	0. 426	0~1,000
A	0.851	0.602	1,000~
В	0.914	0. 282	0~1,000
D	0.865	0. 396	1,000~
С	0.924	0. 1772	0~1,000
	0.885	0. 232	1,000~
D	0. 921	0. 1107	0~1,000
D	0.889	0. 1467	1,000~
E	0.929	0.0864	0~1,000
L	0.897	0. 1019	1,000~
F	0.929	0.0554	0~1,000
1	0.889	0.0733	1,000~
G	0.921	0. 0380	0~1,000
J	0.896	0.0452	1,000~

表-9.4.6 (2) Pasquill-Gifford 図の近似関係

 $\sigma_{z}(x) = \gamma_{z} \cdot x^{\alpha z}$

大気安定度	α_z	γ _z	風下距離 x (m)
А	1. 122 1. 514 2. 109	0. 0800 0. 00855 0. 000212	0~300 300~500 500~
В	0. 964 1. 094	0. 1272 0. 0570	0∼500 500∼
С	0. 918	0. 1068	0~
D	0. 826 0. 632 0. 555	0. 1046 0. 400 0. 811	$ \begin{array}{c c} 0 \sim 1,000 \\ 1,000 \sim 10,000 \\ 10,000 \sim \end{array} $
E	0. 788 0. 565 0. 415	0. 0928 0. 433 1. 732	$ \begin{array}{c c} 0 \sim 1,000 \\ 1,000 \sim 10,000 \\ 10,000 \sim \end{array} $
F	0. 784 0. 526 0. 323	0. 0621 0. 370 2. 41	$ \begin{array}{c c} 0 \sim 1,000 \\ 1,000 \sim 10,000 \\ 10,000 \sim \end{array} $
G	0. 794 0. 637 0. 431 0. 222	0. 0373 0. 1105 0. 529 3. 62	$ \begin{array}{c} 0 \sim 1,000 \\ 1,000 \sim 2,000 \\ 2,000 \sim 10,000 \\ 10,000 \end{array} $

【有効煙突高】

有効煙突高の基本式は、「窒素酸化物総量規制マニュアル(新版)」(平成 12 年、公害研究対策センター)に基づいて、以下に示すとおり設定した。

 $He = Ho + \triangle H$

He :有効煙突高 (m)

Ho:煙突実体高(m)

△H:排出ガス上昇高さ (m)

 \triangle Hについては、以下に示すとおり、有風時(U \ge 1.0m/s)には CONCAWE 式を用い、無風時(U \le 0.4m/s)には Briggs 式を用いて求めた。

また、弱風時については、無風時の計算結果及び有風時の計算式において風速 2.0m/s として求めた結果をもとに、弱風時の風速を 0.7m/s で代表させ線型内挿して求めた。

「有風時 (U≥1.0m/s)」

CONCAWE 式

 $\triangle H = 0.175 \cdot Q_H^{1/2} \cdot U^{-3/4}$

U:煙突高に相当する高さでの風速 (m/s)

Q_H:排出熱量(cal/s)

 $Q_H = \rho \cdot Q \cdot C P \cdot \triangle T$

ρ : 0℃における排出ガス密度=1.293×103 (g/m³)

Q : 排出ガス量 (Nm³/s)

C_P:定圧比熱=0.24 (cal/K/g)

△T:排出ガス温度と気温の温度差(°C)

「無風時 (U < 0.1m/s)」

Briggs 式

 $\triangle H = 1.4 \cdot Q_H^{1/4} (d \theta / dz)^{-3/8}$

 $d\theta/dz$: 温位勾配(\mathbb{C}/m)(昼間: $0.003\mathbb{C}/m$ 、夜間: $0.010\mathbb{C}/m$)他の記号は、CONCAWE 式と同様である。

③ 予測条件

ア. 予測時期

予測時期は、施設の稼働が定常状態となり、存在及び供用による影響が最大となる平成32年度とした。

イ. 排出源位置

排出源位置は、煙突位置とした。

ウ. 予測地点

予測地点は、図-9.4.3に示すとおりである。 予測地点は、敷地境界(北側約60m)とした。

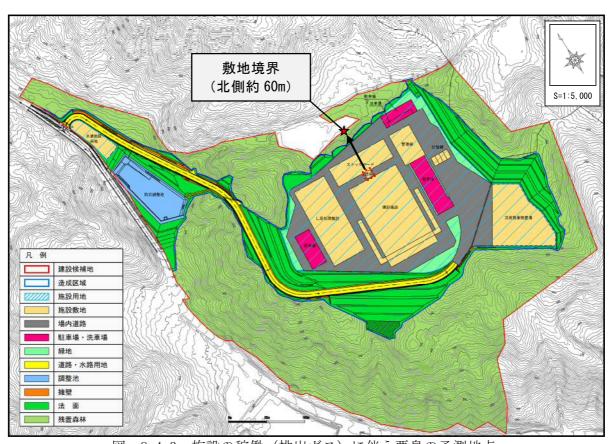


図-9.4.3 施設の稼働(排出ガス)に伴う悪臭の予測地点

工. 排出源条件

排出源条件は、表 -9.4.7に示すとおりである。

表-9.4.7 排出源条件

項	目	数值
州山ボッ具	湿ガス	$82,500 \text{Nm}^3/\text{h}$
排出ガス量	乾ガス ^{注)} (0 ₂ 12%換算値)	$68,750 \text{Nm}^3/\text{h}$
排出ガス温度		194℃
煙突高		59m
煙突口径		0.8m
臭気指数		30 (臭気濃度 1,000)

注) 臭気指数は他事例を参考に設定し、その他の排出源条件はメーカーアンケート調査結果に基づいて設定した。

才. 気象条件

気象条件(風速)は、代表風速として 0.1m/s、0.5m/s、1.0m/s、1.5m/s、2.5m/s、3.5m/s、5.0m/s、7.0m/s、10.0m/s を設定した。

④ 予測結果

最大着地濃度出現時の気象条件は表-9.4.8、予測結果は表-9.4.9及び図-9.4.4に示すとおりである。

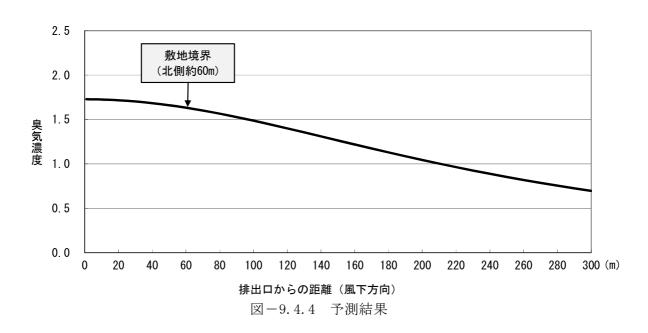

敷地境界(北側約60m)の予測結果(臭気濃度)を臭気指数に変換すると10未満となる。

表-9.4.8 最大着地濃度出現時の気象条件

風速 (m/s)	大気安定度
0.5	A

表-9.4.9 予測結果

予測地点	臭気濃度	臭気指数
敷地境界 (北側約60m)	1.6	10未満

⑤ 評価

ア、環境影響の回避・低減に係る評価

本事業では、施設の稼働(排出ガス)に伴う悪臭の影響を回避・低減するため、以下の環境保全対策を講じる計画とする。

【環境保全対策】

- 煙突から排出される臭気濃度は1,000以下とし、悪臭の発生を抑制する。
- 臭気発生場所は密閉化構造にするとともに、室内を負圧にすることにより、 臭気の漏洩を防止する。
- 臭気発生場所には脱臭設備を設置することにより、臭気を適切に処理する。

以上の環境保全対策により、施設の稼働(排出ガス)に伴う悪臭の影響を回避・低減した計画であると評価する。

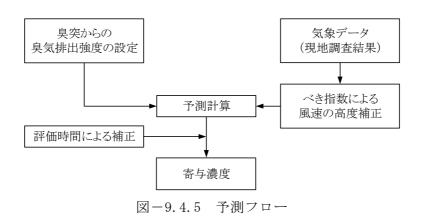
イ. 環境の保全の基準等との整合性

建設候補地及び周辺地域(東広島市及び竹原市)は、悪臭防止法による規制 の指定はされていない。

したがって、悪臭の予測結果については、「臭気指数 10 未満(住民の大多数 が悪臭による不快感を持つことがない濃度未満)」との比較を行うことにより、環境の保全の基準等との整合性に係る評価を行った。

臭気指数の予測結果は、表-9.4.9に示すとおり敷地境界(北側約60m)で10 未満となった。

以上より、施設の稼働(排出ガス)に伴う悪臭の予測結果(臭気指数)は、 10未満となることから、環境の保全の基準等との整合は図られると評価する。


b) 施設の稼働 (機械等の稼働)

① 予測事項

予測事項は、施設の稼働に伴うし尿処理施設の機械等の稼働(臭突)とした。

② 予測方法

予測式は、「環境アセスメントの技術」(1999年8月、(社)環境情報科学センター)に示されるプルーム・パフモデルを用いた。予測フローは、図-9.4.5に示すとおりである。

【予測モデル】

予測モデルは、前項の排出ガスの予測方法 (p.9-4-8) と同様とした。

【予測結果の補正係数】

予測結果の補正係数は、前項の排出ガスの予測方法(p. 9-4-8)と同様とした。

【拡散幅及び標準偏差】

拡散幅及び標準偏差は、前項の排出ガスの予測方法(p. 9-4-9)と同様とした。

【有効煙突高】

有効煙突高は、前項の排出ガスの予測方法 (p. 9-4-10) と同様に設定した。

③ 予測条件

ア. 予測時期

予測時期は、施設の稼働が定常状態となり、存在及び供用による影響が最大となる平成32年度とした。

イ. 排出源位置

排出源位置は、臭突位置とした。

臭突の位置は確定していないため、図-9.4.6に示すとおり敷地境界に最も近い位置に設定した。

ウ. 予測地点

予測地点は、図-9.4.6に示すとおりである。

予測地点は、敷地境界(北東側約40m)とした。

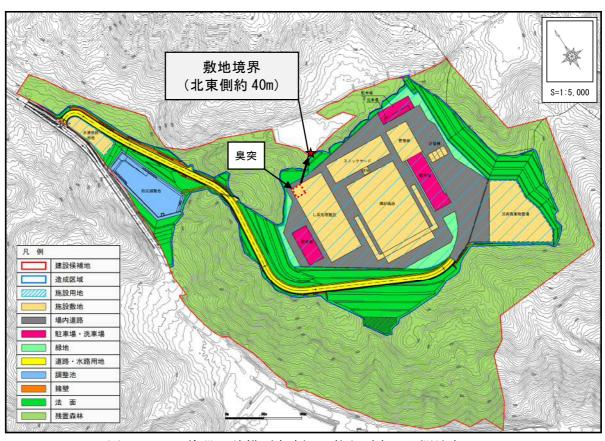


図-9.4.6 施設の稼働(臭突)に伴う悪臭の予測地点

工. 排出源条件

排出源条件は、表 -9.4.10に示すとおりである。

表-9.4.10 排出源条件

項目	数値
排出ガス量	55, 200Nm³/h
排出ガス温度	30℃
臭突高	15m
排出口の形状	1.3m×1.3m
臭気指数	25 (臭気濃度 300)

注)排出源条件はメーカーアンケート調査結果に基づいて設定した。

才. 気象条件

気象条件(風速)は、代表風速として 0.1m/s、0.5m/s、1.0m/s、1.5m/s、2.5m/s、3.5m/s、5.0m/s、7.0m/s、10.0m/s を設定した。

④ 予測結果

最大着地濃度出現時の気象条件は表-9.4.11、予測結果は表-9.4.12及び図-9.4.7に示すとおりである。

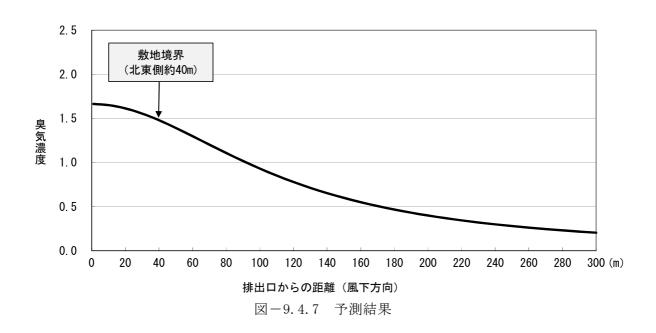

敷地境界(北東側約 40m)の予測結果(臭気濃度)を臭気指数に変換すると 10 未満となる。

表-9.4.11 最大着地濃度出現時の気象条件

風速 (m/s)	大気安定度
0.5	A

表-9.4.12 予測結果

予測地点	臭気濃度	臭気指数
敷地境界 (北東側約40m)	1.5	10未満

⑤ 評価

ア. 環境影響の回避・低減に係る評価

本事業では、施設の稼働(臭突)に伴う悪臭の影響の回避・低減するため、 以下の環境保全対策を講じる計画とする。

【環境保全対策】

- 臭突から排出される臭気濃度は300以下とし、悪臭の発生を抑制する。
- 臭気発生場所は密閉化構造にするとともに、室内を負圧にすることにより、 臭気の漏洩を防止する。
- 臭気発生場所には脱臭設備を設置することにより、臭気を適切に処理する。

以上の環境保全対策により、施設の稼働(臭突)に伴う悪臭の影響を回避・ 低減した計画であると評価する。

イ. 環境の保全の基準等との整合性

建設候補地及び周辺地域(東広島市及び竹原市)は、悪臭防止法による規制 の指定はされていない。

したがって、悪臭の予測結果については、「臭気指数 10 未満(住民の大多数 が悪臭による不快感を持つことがない濃度未満)」との比較を行うことにより、環境の保全の基準等との整合性に係る評価を行った。

臭気指数の予測結果は、表-9.4.12に示すとおり敷地境界(北東側約 40m)で 10 未満となった。

以上より、施設の稼働(臭突)に伴う悪臭の予測結果(臭気指数)は、10未満となることから、環境の保全の基準等との整合は図られると評価する。